Tag Archives: ENSO

Data Watch: UAH Global Mean Temperature April 2014 Release

On May 6th, Dr Roy Spencer released the University of Alabama-Huntsville (UAH) global average lower tropospheric temperature anomaly as measured by satellite for April 2014.

The anomaly refers to the difference between the current temperature reading and the average reading for the period 1981 to 2010 as per satellite measurements.

April 2014: Anomaly +0.19 degrees Celsius

This is the 6th warmest April temperature recorded since the satellite record was started in December 1978 (35 April observations). The warmest April to date over this period was in 1998, with an anomaly of +0.66 degrees Celsius. Incidentally, April 1998 was also the warmest month ever recorded for this time series.

The El Nino Southern Oscillation (ENSO) cycle is the main determinant of when global mean temperature hits a new record over the medium term (up to 30 years). In this connection, the U.S. government’s Climate Prediction Center is now giving a 65% chance of an El Nino developing this summer or fall (here). Should this happen, I would expect the UAH anomalies to head back up into the 0.5s, 0.6s or higher.

As background, five major global temperature time series are collated: three land-based and two satellite-based. The terrestrial readings are from NASA GISS (Goddard Institute for Space Studies), HadCRU (Hadley Centre/Climate Research Unit in the U.K.), and NCDC (National Climate Data Center). The lower-troposphere temperature satellite readings are from RSS (Remote Sensing Systems, data not released to the general public) and UAH (Univ. of Alabama at Huntsville).

The most high profile satellite-based series is put together by UAH and covers the period from December 1978 to the present. Like all these time series, the data is presented as an anomaly (difference) from the average, with the average in this case being the 30-year period from 1981 to 2010. UAH data is the earliest to be released each month.

The official link to the data at UAH can be found here, but most months we get a sneak preview of the release via the climatologist Dr Roy Spencer at his blog.

Spencer, and his colleague John Christy at UAH, are noted climate skeptics. They are also highly qualified climate scientists, who believe that natural climate variability accounts for most of recent warming. If they are correct, then we should see some flattening or even reversal of the upward trend within the UAH temperature time series over a long time period. To date, we haven’t (click for larger image).

UAH Global Temp Apr 14 jpeg

That said, we also haven’t seen an exponential increase in temperature either, which would be required for us to reach the more pessimistic temperature projections for end of century. However, the data series is currently too short to rule out such rises in the future. The Economist magazine published a very succinct summary of the main factors likely accounting for the recent hiatus in temperature rise (here).

One of the initial reasons for publicising this satellite-based data series was due to concerns over the accuracy of terrestrial-based measurements (worries over the urban heat island effect and other factors). The satellite data series have now been going long enough to compare the output directly with the surface-based measurements. All the time series are now accepted as telling the same story (for a fuller mathematical treatment of this, see Tamino’s post at the Open Mind blog here).

Note that the anomalies produced by different organisations are not directly comparable since they have different base periods. Accordingly, to compare them directly, you need to normalise each one by adjusting them to a common base period.

Data Watch: UAH Global Mean Temperature March 2014 Release

On April 7th, Dr Roy Spencer released the University of Alabama-Huntsville (UAH) global average lower tropospheric temperature anomaly as measured by satellite for March 2014.

The anomaly refers to the difference between the current temperature reading and the average reading for the period 1981 to 2010 as per satellite measurements.

March 2014: Anomaly +0.17 degrees Celsius

This is the joint 7th warmest March temperature recorded since the satellite record was started in December 1978 (35 March observations). The warmest March to date over this period was in 2010, with an anomaly of +0.57 degrees Celsius.

The El Nino Southern Oscillation (ENSO) cycle is the main determinant of when global mean temperature hits a new record over the medium term (up to 30 years). In this connection, the U.S. government’s Climate Prediction Center is now giving a 50% chance of an El Nino developing this summer or fall (here). Should this happen, I would expect the UAH anomalies to head back up into the 0.5s, 0.6s or higher. The next update is on the 10th of April.

As background, five major global temperature time series are collated: three land-based and two satellite-based. The terrestrial readings are from NASA GISS (Goddard Institute for Space Studies), HadCRU (Hadley Centre/Climate Research Unit in the U.K.), and NCDC (National Climate Data Center). The lower-troposphere temperature satellite readings are from RSS (Remote Sensing Systems, data not released to the general public) and UAH (Univ. of Alabama at Huntsville).

The most high profile satellite-based series is put together by UAH and covers the period from December 1978 to the present. Like all these time series, the data is presented as an anomaly (difference) from the average, with the average in this case being the 30-year period from 1981 to 2010. UAH data is the earliest to be released each month.

The official link to the data at UAH can be found here, but most months we get a sneak preview of the release via the climatologist Dr Roy Spencer at his blog.

Spencer, and his colleague John Christy at UAH, are noted climate skeptics. They are also highly qualified climate scientists, who believe that natural climate variability accounts for most of recent warming. If they are correct, then we should see some flattening or even reversal of the upward trend within the UAH temperature time series over a long time period. To date, we haven’t (click for larger image).

UAH March 14 jpeg

That said, we also haven’t seen an exponential increase in temperature either, which would be required for us to reach the more pessimistic temperature projections for end of century. However, the data series is currently too short to rule out such rises in the future. Surprisingly, The Economist magazine has just published a very succinct summary of the main factors likely accounting for the recent hiatus in temperature rise (here).

One of the initial reasons for publicising this satellite-based data series was due to concerns over the accuracy of terrestrial-based measurements (worries over the urban heat island effect and other factors). The satellite data series have now been going long enough to compare the output directly with the surface-based measurements. All the time series are now accepted as telling the same story (for a fuller mathematical treatment of this, see Tamino’s post at the Open Mind blog here).

Note that the anomalies produced by different organisations are not directly comparable since they have different base periods. Accordingly, to compare them directly, you need to normalise each one by adjusting them to a common base period.

Data Watch: Sea Level Rise

Who would have thought that sea level would exhibit volatility? Latest data from the U.S. government agency the National Oceanic and Atmospheric Administration (NOAA) to mid-January shows sea level rise pushing to the top of its twenty-year trend line. But only a little more than a year ago sea level exhibited a significant drop of 5 mm (and the “climate skeptic” blogosphere was alight with the claim that sea level rise had stopped). The drop was related to a sudden transition from El Nino to La Nina conditions which dumped an unprecedented amount of water on land. An explanation by NASA of this phenomenon is here.

A good backgrounder on sea level rise can be found at Real Climate (here and here) by Stefan Rahmstorf, one of the world’s foremost experts on sea level.

The major sea level time series all show sea level rising at roughly 3 mm per annum linear rate over the past two decades.

NOAA Sea Level  jpg

In order for us to experience the more pessimistic sea level rise outcomes of 1 to 2 metres by end of century (see for example here), the rate of rise will need to break out of its linear 3 mm per annum trend in the not too distant future. High rates of sea level rise have the potential to cause massive economic disruption, so a careful tracking of any change in trend is a critical component in gauging climate risk. Continue reading